IN MY OPINION
In Memoriam: Jerry A. Bleich
By Karen Hoppe

What can you say about a friend and colleague like Jerry Bleich, who left this world far too soon,
with more life to be lived, more love to share, adventures to plan, and future family joy to experience?
Read More...
MILITARY MICROWAVE DIGEST


MMD March 2014
New Military Microwave Digest

ON THE MARKET


Band Reject Filter Series
Higher frequency band reject (notch) filters are designed to operate over the frequency range of .01 to 28 GHz. These filters are characterized by having the reverse properties of band pass filters and are offered in multiple topologies. Available in compact sizes.
RLC Electronics


SP6T RF Switch
JSW6-33DR+ is a medium power reflective SP6T RF switch, with reflective short on output ports in the off condition. Made using Silicon-on-Insulator process, it has very high IP3, a built-in CMOS driver and negative voltage generator.
Mini-Circuits


Group Delay Equalized Bandpass Filter
Part number 2903 is a group delayed equalized elliptic type bandpass filter that has a typical 1 dB bandwidth of 94 MHz and a typical 60 dB bandwidth of 171 MHz. Insertion loss is <2 dB and group delay variation from 110 to 170 MHz is <3nsec.
KR Electronics


Absorptive Low Pass Filter
Model AF9350 is a UHF, low pass filter that covers the 10 to 500 MHz band and has an average power rating of 400W CW. It incurs a rejection of 45 dB minimum at the 750 to 3000 MHz band, and power rating of 25W CW from 501 to 5000 MHz.
Werlatone


LTE Band 14 Ceramic Duplexer
This high performance LTE ceramic duplexer was designed and built for use in public safety communication and commercial cellular applications. It operates in Band 14 and offers low insertion loss and high isolation to enable clear communications in the LTE network.
Networks International

See all products in this issue


INDUSTRY NEWS
 


RFMD Awarded $9.7M Air Force Contract to Produce Millimeter Wave GaN Integrated Circuits

RFMD, a global leader in the design and manufacture of high-performance radio frequency solutions, announced it has signed a $9.7 million agreement with the Manufacturing and Industrial Technologies Directorate within the Air Force Research Laboratory (AFRL) to transfer and produce a 0.14 micron Gallium Nitride (GaN) monolithic microwave integrated circuit (MMIC) technology. The technology will be scaled to 6-inch diameter wafers using RFMD’s industry-leading 6-inch GaN-on-Silicon Carbide (SiC) manufacturing line. “Through this Air Force contract we have the opportunity to establish the industry’s first 6-inch millimeter wave GaN-on-SiC process technology, allowing RFMD to expand our technology capabilities beyond 100GHz,” said Gorden Cook, general manager of RFMD Power Broadband. “We expect this new technology will not only enable a new class of affordable power MMICs for defense applications such as radar and military communications, but also commercial applications including cable TV networking, microwave backhaul and cellular infrastructure.” According to industry analyst firm Strategy Analytics, the GaN microelectronics market is expected to more than triple to $334 million by 2017, representing a compound annual growth rate (CAGR) of 28%. This market growth is led by growth in both military (radar, electronic warfare, communications) and commercial (power management, cellular, CATV, land mobile radios) applications. “AFRL has a distinguished history of developing high performance technologies with an understanding of underlying physics that drive reliability,” added Cook. “RFMD plans to leverage AFRL’s experience to offer reliable, 0.14 micron gate GaN power technology for mass production in our U.S based open foundry.” GaN technology supports broad frequency bandwidths and high breakdown voltages in a small area.  RFMD’s 6-inch GaN wafer offers 2.5 times more useable area over competing 4-inch GaN wafer platforms currently available, resulting in 2.5 times more RF power devices per wafer. Millimeter wave GaN enables the best trade-off between key performance parameters such as power gain, bandwidth and efficiency for applications in the range of DC to over 100GHz.




 

 

SEARCH MPD’S EXTENSIVE DATABASE!

You Can
Search by Number:

   
  All ads, articles, and products in printed issues of MPD have a number. Just look for the red arrow in the ad or at the end of the article or product description.


FROM WHERE WE SIT

Uncertain Times for DefenseWill OpenRFM Shake Up the Microwave Industry?
By Barry Manz

Throughout the history of the RF and microwave industry there has never been a form factor standardizing the electromechanical, software, control plane, and thermal interfaces used by integrated microwave assemblies (IMAs) employed in defense systems. Rather, every system has been built to meet the requirements of a specific system, which may be but probably isn’t compatible with any other system. It’s simply the way the industry has always responded to requests from subcontractors that in turn must meet the physical, electrical, and RF requirements of prime contractors. Read More...


Home | About Us | Archives | Editorial Submissions | Media Kit (PDF) | Events | Subscribe/Renew | Contact Us
Copyright © 2014 Octagon Communication Inc. DBA MPDigest / MPDigest.com, All Rights Reserved.
Privacy Policy | Site Map