The Opportunities and Challenges of LTE Unlicensed in 5 GHz
David Witkowski, Executive Director, Wireless Communications Initiative
In 1998, the Federal Communications Commission established the Unlicensed National Information Infrastructure or U-NII 5 GHz bands. These are used primarily for Wi-Fi networks in homes, offices, hotels, airports, and other public spaces and also consumer devices. U-NII is also used by wireless Internet Service Providers, linking public safety radio sites, and for monitoring and critical infrastructure such as gas/oil pipelines.

MMD March 2014

Previous issues click here


Band Reject Filter Series
Higher frequency band reject (notch) filters are designed to operate over the frequency range of .01 to 28 GHz. These filters are characterized by having the reverse properties of band pass filters and are offered in multiple topologies. Available in compact sizes.
RLC Electronics

SP6T RF Switch
JSW6-33DR+ is a medium power reflective SP6T RF switch, with reflective short on output ports in the off condition. Made using Silicon-on-Insulator process, it has very high IP3, a built-in CMOS driver and negative voltage generator.

Group Delay Equalized Bandpass Filter
Part number 2903 is a group delayed equalized elliptic type bandpass filter that has a typical 1 dB bandwidth of 94 MHz and a typical 60 dB bandwidth of 171 MHz. Insertion loss is <2 dB and group delay variation from 110 to 170 MHz is <3nsec.
KR Electronics

Absorptive Low Pass Filter
Model AF9350 is a UHF, low pass filter that covers the 10 to 500 MHz band and has an average power rating of 400W CW. It incurs a rejection of 45 dB minimum at the 750 to 3000 MHz band, and power rating of 25W CW from 501 to 5000 MHz.

LTE Band 14 Ceramic Duplexer
This high performance LTE ceramic duplexer was designed and built for use in public safety communication and commercial cellular applications. It operates in Band 14 and offers low insertion loss and high isolation to enable clear communications in the LTE network.
Networks International

See all products in this issue

August 2007

The Doherty Amplifier: New After 70 Years
By Freescale Semiconductor, RF Division

The Doherty amplifier architecture has in less than 5 years become the “amplifier of choice” for new wireless transmitters after essentially laying dormant since W.H. Doherty first described it in 1936. The Doherty’s obscurity is directly attributable to the predominant modulation schemes (AM and FM) employed in communication systems over the years, which do not possess high peak-to-average ratios (PARs). The resurgence of interest in the concept is based on its very high power-added efficiency when amplifying input signals with high PARs – precisely the type exhibited by WCDMA, CDMA2000, and systems employing Orthogonal Frequency Division Multiplexing (OFDM), such as WiMAX and the upcoming Long-Term Evolution (LTE) enhancement to the UMTS wireless standard.

In fact, when properly designed, a Doherty amplifier can produce increases in efficiency of 11% to 14% when compared to standard parallel Class AB amplifiers that have traditionally been employed in wireless base station transmitters. Since the transmitter accounts for a high percentage of overall system power consumption, the cost savings delivered by the Doherty amplifier’s efficiency can reduce base station annual electricity costs. Thus its appeal for wireless base station manufacturers and wireless service providers.

While the intrinsic high efficiency of the Doherty architecture makes it desirable for current and next-generation wireless systems, it presents unique challenges from a design perspective. The linearity and output power of the Doherty architecture are slightly less than exhibited by a dual Class AB amplifier, and it can produce higher distortion as well. Fortunately, the advancements in analog and digital predistortion and feed-forward linearization techniques can dramatically reduce the Doherty’s distortion. In addition, careful amplifier design can mitigate its inherently lower linearity. The remaining challenge is to create RF power transistors that can accommodate the requirements of the two types of amplifiers employed by the Doherty architecture and produce optimum RF output power over a wide array of signal conditions.

A Doherty overview
A “classic” Doherty amplifier (Figure 1) employs two amplifiers. The carrier amplifier is biased to operate in Class AB mode and the peaking amplifier is biased to operate in Class C mode. The input signal is split by a power divider equally to each amplifier with a 90-deg. difference in phase. After the signals are amplified, the signals are recombined with a power combiner. Both amplifiers operate when the input signal peaks, and are each presented with the load impedance that enables maximum power output. However, as the input signal decreases in power, the Class C peaking amplifier turns off and only the Class AB carrier operates. At these lower power levels, the Class AB carrier amplifier is presented with a modulated load impedance that enables higher efficiency and gain. The result is an extremely efficient solution for amplifying the complex modulation schemes employed in current and emerging wireless systems.

Email this article to a friend!


You Can
Search by Number:

  All ads, articles, and products in printed issues of MPD have a number. Just look for the red arrow in the ad or at the end of the article or product description.


Uncertain Times for DefenseOpen’s Systems and Changes in DoD Procurement: This Time It’s Real
By Barry Manz

The U.S. Department of Defense has a well-earned reputation for inertia. Many proposals for change are made – but nothing happens. The COTS initiative, which promised cost savings through the use of off-the-shelf commercial parts, sounded terrific at the time. It heralded a major departure from standard DoD procurement that more or less guaranteed that every system would be different in part because it used parts that were developed from scratch, leading to “one-off” systems that were very expensive. Read More...

Home | About Us | Archives | Editorial Submissions | Media Kit (PDF) | Events | Subscribe/Renew | Contact Us
Copyright © 2014 Octagon Communication Inc. DBA MPDigest /, All Rights Reserved.
Privacy Policy | Site Map