The Opportunities and Challenges of LTE Unlicensed in 5 GHz
David Witkowski, Executive Director, Wireless Communications Initiative
In 1998, the Federal Communications Commission established the Unlicensed National Information Infrastructure or U-NII 5 GHz bands. These are used primarily for Wi-Fi networks in homes, offices, hotels, airports, and other public spaces and also consumer devices. U-NII is also used by wireless Internet Service Providers, linking public safety radio sites, and for monitoring and critical infrastructure such as gas/oil pipelines.

MMD March 2014

Previous issues click here


Band Reject Filter Series
Higher frequency band reject (notch) filters are designed to operate over the frequency range of .01 to 28 GHz. These filters are characterized by having the reverse properties of band pass filters and are offered in multiple topologies. Available in compact sizes.
RLC Electronics

SP6T RF Switch
JSW6-33DR+ is a medium power reflective SP6T RF switch, with reflective short on output ports in the off condition. Made using Silicon-on-Insulator process, it has very high IP3, a built-in CMOS driver and negative voltage generator.

Group Delay Equalized Bandpass Filter
Part number 2903 is a group delayed equalized elliptic type bandpass filter that has a typical 1 dB bandwidth of 94 MHz and a typical 60 dB bandwidth of 171 MHz. Insertion loss is <2 dB and group delay variation from 110 to 170 MHz is <3nsec.
KR Electronics

Absorptive Low Pass Filter
Model AF9350 is a UHF, low pass filter that covers the 10 to 500 MHz band and has an average power rating of 400W CW. It incurs a rejection of 45 dB minimum at the 750 to 3000 MHz band, and power rating of 25W CW from 501 to 5000 MHz.

LTE Band 14 Ceramic Duplexer
This high performance LTE ceramic duplexer was designed and built for use in public safety communication and commercial cellular applications. It operates in Band 14 and offers low insertion loss and high isolation to enable clear communications in the LTE network.
Networks International

See all products in this issue

January 2014

Highly Integrated, High Performance Microwave Radio IC Chipsets Cover 6 - 42 GHz Bands
By Hittite Microwave

Complete Upconversion & Downconversion Chipsets for Microwave Point-to-Point Outdoor Units (ODUs)

Today’s mobile devices deliver more communications power than ever before. The newest Smartphones use roughly 30 times more data than the cellphones they replaced, which means that the demand for mobile data is doubling every year. Industry analysts predict mobile data traffic will quadruple by 2015 as the number of mobile users and use of multimedia services continues to rise. As a result, cell sizes are shrinking, microwave backhaul networks are getting denser, new sites are getting smaller and established sites are becoming more densely populated.

Figure 1: Full ODU Block Diagram

Full outdoor microwave radios (or FODUs) are emerging because space for equipment such as indoor units (IDUs) is at a premium and the costs of upgrading sites with bigger equipment shelters is often not viable or possible due to site constraints (Figure 1). As a result, more network terminals are being repackaged for deployment outdoors on supporting structures such as towers, walls or masts. Full outdoor microwave radios are self-contained systems which incorporate the traffic interfaces, switching/multiplexing elements, radio modem and radio transceiver—all packaged in a weatherproof outdoor housing. Full ODUs also eliminate cabling and the inherent cable losses, and with Hittite’s highly integrated IF transmitter and receiver chips and baseband modem chips, can ultimately offer the designer a less complex radio with reduced footprint.

By contrast, the outdoor unit (ODU) used in traditional split-mount systems only contains the microwave radio, which connects to a radio modem embedded in an indoor unit (IDU) (Figure 2) over a coaxial cable. In a split-mount radio system, the IDU also provides the traffic interfaces and switching/multiplexing elements.

Figure 2: Split-Mount ODU Block Diagram

In recognition of these industry developments, Hittite Microwave has developed a series of microwave radio IC chipsets which cover the 6 to 42 GHz frequency bands while dramatically reducing the size, complexity, production cost and power consumption of microwave radios. The chipsets offer complete upconversion and downconversion solutions which are designed to address the need for higher bandwidth and faster time-to-market in microwave split-mount ODUs, and are equally applicable to full outdoor units (FODU). The chipset solutions simplify system manufacturing, deployment, and inventory management, as the chipsets are highly integrated such that fewer individual ICs are required. Hittite’s new chipsets also support high order modulation, providing 7 to 112 MHz channels of up to 4096-QAM modulation and delivering a significant improvement in spectrum utilization and capacity.

Figure 3: Complete 18 GHz Transmit/Receive Chipset Reference Design

The functional diagram shown above in Figure 3 is an example of how Hittite’s upconversion and downconversion chipsets can be used to realize a microwave radio transceiver solution for the licensed 18 GHz point-to-point radio band (17.7 to 19.7 GHz).

The 18 GHz Transmit Chipset reference design coverts the 350 MHz IF frequency from the IDU to an 18 GHz transmit signal at the antenna.

At the heart of the Transmit chipset is a highly integrated IF Transmitter chip, HMC7436LP5ME. HMC7436LP5ME is designed for high linearity operation, supports modulations up to 4096-QAM and is housed in a compact, 32-pin 5 x 5 mm standard QFN package.

Figure 4: The 18 GHz Transmit Chipset Reference Design

The HMC7436LP5ME IF Transmitter chip, shown in Figure 5, takes the industry standard 300 to 400 MHz IF input signal and converts it to a 0.85 to 4 GHz single-ended RF signal at its output. The IF input power range is from -28 dBm to +3 dBm. To equalize for input signal cable losses, HMC7436LP5ME provides 32 dB of digital gain control in 1 dB steps, while an analog VGA controls the transmit output power continuously from -20 dBm to 0 dBm.

The HMC7436LP5ME also features three integrated power detectors. A square law detector after the DVGA is used to set the power level into the mixer, the envelope detector after the mixer can be used for calibration, and the log detector is for fine output power adjustment through the analog VGA. Analog baseband IQ interfaces (not shown) are also provided to support full ODU configurations. In this baseband configuration, the HMC7436LP5ME includes four integrated and configurable low pass reconstruction filters covering channel bandwidths of 14, 28, 56 and 112 MHz with bandwidth calibration. The IF Transmitter chip is configured via a 3-wire SPI interface.

Figure 5: HMC7436LP5ME IF Transmitter Chip Block Diagram

The LO for the receiver chip can be taken from the HMC830LP6GE wideband fractional synthesizer which covers 25 to 3000 MHz, or the HMC833LP6GE which covers up to 6000 MHz.

The HMC819LC5 in the transmit chain is a sub-harmonically pumped I/Q transmitter which incorporates a frequency doubler in the LO path, a pair of double balanced mixer cells, and a single-ended driver output amplifier. This high linearity I/Q transmitter is rated for microwave frequencies from 17.7 to 23.6 GHz, and provides 15 dB conversion gain and 35 dB of sideband rejection. The upconverter is followed by the HMC812LC4 voltage variable attenuator (VVA) which is used to set the output power level of the transmit chain. The HMC812LC4 is rated from 5 to 30 GHz and provides a continuously variable attenuation range from 0 to 30 dB. Implementing a VVA in this section enables the radio to dynamically adjust its output power depending upon the environmental conditions. Following the VVA, the HMC6981LS6 power amplifier delivers 2W of output power, representing one of Hittite’s best-in-class microwave radio linear power amplifiers.The HMC6981LS6 covers the 15 to 20 GHz frequency band and delivers 26 dB of gain,+33.5 dBm output P1dB and +43.5 dBm output IP3. The amplifier also features an integrated, temperature-compensated power detector which may be used in a closed loop circuit to maintain constant output power over temperature variations.

Figure 6: The 18 GHz Receive Chipset Reference Design

The LO for the upconverter is provided by the HMC765LP6CE fractional PLL/VCO which covers 7.8 to 8.8 GHz with closed loop phase noise of -101 dBc/Hz at 10 kHz offset.Hittite Microwave offers the widest portfolio of fully integrated PLL-based microwave frequency synthesizers and VCOs with best-in-class phase noise and spurious performance.

The 18 GHz Receive Chipset Reference design converts 18 GHz RF signals from the antenna down to a 140 MHz IF which travels via coaxial cable back to the IDU.

In the receiver section, the HMC966LP4E shown in Figure 6 is a sub-harmonically-pumped low noise downconverter (LNC) which is rated for input frequencies from 17 to 20 GHz, and incorporates a frequency doubler in the LO path, with a pair of double balanced mixer cells. The HMC966LP4E accepts a sub-harmonic LO input between 7.5 and 11.75 GHz, supports an IF of DC to 3.5 GHz, and achieves 40 dBc image rejection and a low 2.5 dB noise figure.

Figure 7: HMC7362LP6JE IF Receiver Chip Block Diagram

Following the LNC is the highly integrated IF Receiver chip, HMC7362LP6JE which converts the downconverted receive signal to a 140 MHz IF which is fed back to the IDU. As shown in Figure 7, it includes three VGAs to achieve 80 dB of analog gain control, three power detectors, a programmable AGC block, as well as selectable integrated bandpass filters (14, 28 or 56 MHz bandwidth). The filters can also be bypassed to allow for off-chip filtering of other user-defined bandwidths.

The HMC7362LP6JE IF Receiver chip is designed for high linearity operation, supporting modulations of up to 4096-QAM and bandwidths up to 112 MHz. It supports an RF input range from 0.8 to 4 GHz and is housed in a compact, 40-pin 6 x 6 mm standard QFN package.
The HMC7362LP6JE also supports baseband IQ interfaces after the mixer so that the chips can be used in the full ODU configuration.

Figure 8a: 18 GHz Microwave Link Demonstration Setup

For all other microwave radio bands, designers can select chipsets to realize all of the licensed microwave radio bands from 6 to 42 GHz. The IF Transmitter and Receiver chips HMC7436LP5ME and HMC7362LP6JE support all of the standard microwave frequency bands from 6 to 42 GHz. No other supplier offers a broader array of chipset solutions for the microwave radio market.

18 GHz Point-to-Point Microwave 1024-QAM Link Demonstration
To validate the performance of the Tx and Rx chipsets, an 18 GHz Point-to-Point microwave demonstration link was set up. Hittite Microwave Corp. and Xilinx worked together to develop the demonstration setup shown in Figure 8A. The demonstration setup combines the Xilinx XPIC_R1 modem boards with a pair of transmit and receive microwave front-end boards from Hittite. The connections between the Xilinx and Hittite boards are the conventional 140 MHz Rx IF and 350 MHz Tx IF. The Xilinx XPIC_R1 is running the complete PtP modem IP, named MWR1024RS, on a Kintex-7 FPGA. This full-featured, high-performance modem IP from Xilinx is capable of up to 1.0 Gbps raw data throughput with QAM-1024 modulation. The user data payload is streamed over a Gigabit Ethernet link in the end system. The demonstration platform relied on the Xilinx MWR1024RS PtP Modem GUI to control the boards and display the received signal constellation and key link statistics (see Figure 8B). More information on the MWR1024RS PtP modem IP is available from Xilinx.

Figure 8b: Detailed Constellation View Featuring 1024 QAM

The Hittite synthesizer and IF chips were programmed using a 3-wire SPI port. The synthesizers were programmed for an IF frequency of 1740 MHz for Tx and 1840 MHz for Rx, while the IF chips were programmed for channel bandwidth, gain and interface type (IF). The Tx modem was configured to transmit a 1024-QAM modulated signal in a 30 MHz channel, and the transmitter chip gains were set to achieve +20 dBm RF signal output power. A variable RF attenuator was connected between the transmit and receive RF ports to simulate the link path loss that would be realized in a deployed microwave radio link. As the RF attenuator was varied, the AGC in the Rx IF chip maintained the appropriate IF output power to the modem to maintain optimal link performance.

The modem was able to measure a BER (Bit Error Rate) of better than 10-9over a wide range of attenuation settings. The digital modem can demodulate even lower signal levels as it supports modulation orders down to QPSK – which may be changed on-the-fly.

Hittite Microwave continues to provide innovative, high performance, Antenna-to-Bits microwave radio solutions covering all bands from 6 to 42 GHz, while supporting both split-mount and full ODU style microwave radios.

The IF Transmitter and IF Receiver chips HMC7436LP5ME and HMC7362LP6JE provide a very high level of integration, support all of the standard microwave frequency bands from 6 to 42 GHz, and form the core of these compact, high performance microwave radio chipsets.

Hittite Microwave and Xilinx have successfully demonstrated a complete modem with 1024-QAM modulation in a 30 MHz channel over an 18 GHz microwave link. The BER (Bit Error Rate) of the complete modem was better than 10-9 over a wide range of attenuation settings. The IF Transmitter and IF Receiver chips are also capable of supporting modulations of 2048 and 4096-QAM.

Designers should consult Hittite Microwave directly to discuss specific custom microwave radio requirements. For IF Transmitter and Receiver product inquiries or for more information regarding the 18 GHz chipset reference designs, please contact All released data sheets are available at For more information on Xilinx solutions, visit

Hittite Microwave
Email this article to a friend!


You Can
Search by Number:

  All ads, articles, and products in printed issues of MPD have a number. Just look for the red arrow in the ad or at the end of the article or product description.


Uncertain Times for DefenseWill OpenRFM Shake Up the Microwave Industry?
By Barry Manz

Throughout the history of the RF and microwave industry there has never been a form factor standardizing the electromechanical, software, control plane, and thermal interfaces used by integrated microwave assemblies (IMAs) employed in defense systems. Rather, every system has been built to meet the requirements of a specific system, which may be but probably isn’t compatible with any other system. It’s simply the way the industry has always responded to requests from subcontractors that in turn must meet the physical, electrical, and RF requirements of prime contractors. Read More...

Home | About Us | Archives | Editorial Submissions | Media Kit (PDF) | Events | Subscribe/Renew | Contact Us
Copyright © 2014 Octagon Communication Inc. DBA MPDigest /, All Rights Reserved.
Privacy Policy | Site Map