The Opportunities and Challenges of LTE Unlicensed in 5 GHz
David Witkowski, Executive Director, Wireless Communications Initiative
In 1998, the Federal Communications Commission established the Unlicensed National Information Infrastructure or U-NII 5 GHz bands. These are used primarily for Wi-Fi networks in homes, offices, hotels, airports, and other public spaces and also consumer devices. U-NII is also used by wireless Internet Service Providers, linking public safety radio sites, and for monitoring and critical infrastructure such as gas/oil pipelines.

MMD March 2014

Previous issues click here


Band Reject Filter Series
Higher frequency band reject (notch) filters are designed to operate over the frequency range of .01 to 28 GHz. These filters are characterized by having the reverse properties of band pass filters and are offered in multiple topologies. Available in compact sizes.
RLC Electronics

SP6T RF Switch
JSW6-33DR+ is a medium power reflective SP6T RF switch, with reflective short on output ports in the off condition. Made using Silicon-on-Insulator process, it has very high IP3, a built-in CMOS driver and negative voltage generator.

Group Delay Equalized Bandpass Filter
Part number 2903 is a group delayed equalized elliptic type bandpass filter that has a typical 1 dB bandwidth of 94 MHz and a typical 60 dB bandwidth of 171 MHz. Insertion loss is <2 dB and group delay variation from 110 to 170 MHz is <3nsec.
KR Electronics

Absorptive Low Pass Filter
Model AF9350 is a UHF, low pass filter that covers the 10 to 500 MHz band and has an average power rating of 400W CW. It incurs a rejection of 45 dB minimum at the 750 to 3000 MHz band, and power rating of 25W CW from 501 to 5000 MHz.

LTE Band 14 Ceramic Duplexer
This high performance LTE ceramic duplexer was designed and built for use in public safety communication and commercial cellular applications. It operates in Band 14 and offers low insertion loss and high isolation to enable clear communications in the LTE network.
Networks International

See all products in this issue

May 2014

GaN Solutions for Next Generation Military Communications
By Raymond Baker, MACOM Technology Solutions (MACOM)

Military radios, like their commercial counterparts, must satisfy users who demand ever increasing amounts of data. But military operation requires an extra layer of reliability, frequency agility, and versatility to serve ships, warfighters, vehicles, and aircraft.

Advanced waveforms and signal processing increase the channel efficiency; improve jam resistance; allow networking, interoperability, and other tailoring to specific operational scenarios. But in all cases, the radio must confront the simple reality that over-the-air communications requires RF power to reliably move those bits, close that link, and overcome jamming and channel impairments. That final radio stage – the RF power amplifier – must operate over wide instantaneous bandwidth, deliver high linearity and efficiency, and do it all within difficult size, weight, and power constraints.

Figure 1: SOIC, QFN, DFN Medium Power GaN plastic packages

Legacy MILCOM radios operate on either the VHF 30-88 MHz or UHF 225-400 MHz bands. Most radios today support both bands in the same platform, so with typical extensions that becomes 30-512 MHz. New wideband datalinks at 1300 - 1800 MHz mean that a future-proof radio should span 30-2000 MHz and support high peak-to-average linear to CW (constant envelope) waveforms.

LDMOS operates to 2 GHz, but exhibits almost linearly decreasing bandwidth versus frequency. A 30 MHz to 2 GHz radio might require a half dozen or more LDMOS amplifier chains versus only two with GaN devices. Clearly, GaN technology is a new tool for radio designers, one that enables new radio architectures that meet these forward looking bandwidth, efficiency and power density goals.

Figure 2: Integrated Amplifier functional diagram

Why GaN?
GaN is a unique III/V semiconductor process that combines the electron mobility and bandwidth of GaAs with the high power capability and ruggedness of LDMOS. Compared to LDMOS, a comparable power GaN device has a fraction of the CGS and CDS capacitances. This allows wide bandwidth and high power added efficiency to several GHz with today’s common 0.5 and 0.25 mm gate processes.

Within the GaN world there are many suppliers, but only two fundamental recipes, based on either Silicon or Silicon-Carbide substrates. At the top level, both GaN-on-Si and GaN-on-SiC produce a variety of products with similar thermal and RF performance. GaN-on-Si though has a significant cost advantage that, combined with plastic packaging, is disruptively driving down the cost curve. For example, at the 100W level a new GaN-on-Si device has just broken the $1/W barrier in volume, with a roadmap to further reductions as both military and commercial volumes grow.[1] GaN provides the technology breakthrough for wideband operation, but GaN on Si is trimming LDMOS’ principal remaining advantage, i.e. price.

Driver and Mid-Level Power Stages
Integrated GaN amplifiers can now address almost any conceivable MILCOM application below 2 GHz up to 25W and are easily optimized to meet specific needs. Typical packages include QFN and DFN footprints, with dimensions of 4 to 8 mm per side.

Power amplifiers in the 1W to 10W range find homes as output stages in handheld or battery powered radios, and driver stages in higher power platforms. Because of their varied requirements and moderate volumes, these stages have historically been built around externally matched discrete silicon or GaAs based transistors.

Figure 3: 1 GHz, 15W, Integrated GaN Amplifier Application

Many GaN devices in this power range still use expensive ceramic packages. But growing volumes allow commercial plastic options that both reduce cost and support standard SMT manufacturing flows. Figure 1 shows typical examples. But designers should exercise some caution with these plastic cased devices as their small footprint pushes a lot of heat into a small circuit board area. While the thermal impedance of the device alone may be surprisingly good, the thermal impedance of the PCB may be a comparable contributor and deserves attention. Good design requires void free solder wetting across the ground pad, a dense array of plated through vias, and in some cases a copper coin either inserted in the board or soldered on the backside. The designer must consider the thermal contribution of every interface and component from the device to the heatsink or case.

For these medium power levels, new 28V and 48V integrated GaN amplifiers can greatly ease the design task, shrink the board footprint, and deliver better-than-discrete performance. Table 1 offers typical examples, some of which are available from multiple vendors. They combine an integrated input match and a properly sized GaN active device in a reflow friendly plastic or laminate SMT package.

Table 1: GaN Integrated Amplifiers

Thanks to the relationship between power, voltage, and low Q, these GaN devices naturally exhibit output impedances that are easily transformed to 50 ohms, especially at low frequencies, so the main design challenge is the higher capacitance, higher Q, input impedance. The design approach uses a lossy equalizer input match that provides both low VSWR and flat overall gain. Figure 2 shows a simplified functional diagram of a typical device.

The input network includes coupling and bias isolation components that create an inherent low frequency pole. Pay special attention to the datasheet if your lower band edge falls below about 100 MHz as typical 3 dB points fall in the range of 20 MHz to 50 MHz.

While the output is not matched to 50 ohms, this is easily and efficiently transformed into a 50 ohm match with a few external SMT passives, sometimes in concert with the bias network, as shown in Figure 3. Datasheets usually include wideband or full band application circuits but designers can easily tailor these to maximize power, efficiency, or return loss over narrower bands.

Figure 4: 30-512 MHz, 100 Watt GaN Amplifier

Output Stage
The 50W to 100W power level merits a quick refresher on the relationship between RF power, voltage, and load impedance. Using a 28V supply, the ideal load line for a 100W amplifier is about 4 ohms using the familiar:

Matching 4 ohms over multi-octave or even decade-plus bandwidth is a serious challenge. If, however, we raise the supply to 48V, then the natural load line becomes 12 ohms, which matches to 50 ohms with a simple wideband 4:1 impedance transformer. That is the fundamental breakthrough used in the base building block of Figure 4, a 30-512 MHz amplifier that provides almost 100W with 60% typical efficiency.

Components F1 and F2 are ferrite loaded broadband 4:1 impedance transformers made with semirigid coax and a ferrite binocular core. The near ideality of the GaN device, specifically its low inherent output capacitance, is evidenced by the stark simplicity of the output match—nothing more than one transformer and a coupling capacitor.

With this PA block in place, the system designer can select a reference design from Table 2 to satisfy specific applications spanning from UHF to L-band.

Table 2: Typical MILCOM 48V Reference Designs

A 100W capable 48V GaN device from multiple vendors will generally support this performance. However, gain, power, efficiency, linearity, reliability, and cost will vary somewhat, so designers should evaluate those several options to find the best fit to their requirements. As an example: thermal impedance can vary from about 1° C/W to nearly 3° C/W, so only some of these devices are truly suitable for CW operation.

This article discussed the use of RF power GaN for broadband MILCOM radio applications. With the recent introduction of low-to-medium power integrated PAs with broadband performance, design for these challenging applications has never been easier. At UHF frequencies, using a simple 4:1 impedance transformer enables straightforward 100W class PA solutions, while slightly more complex impedance matching networks allow for even higher frequency range performance. GaN is proving to be the semiconductor technology to address current and future MILCOM PA needs.

[1] MACOM;

MACOM Technology Solutions
Email this article to a friend!


You Can
Search by Number:

  All ads, articles, and products in printed issues of MPD have a number. Just look for the red arrow in the ad or at the end of the article or product description.


Uncertain Times for DefenseWill OpenRFM Shake Up the Microwave Industry?
By Barry Manz

Throughout the history of the RF and microwave industry there has never been a form factor standardizing the electromechanical, software, control plane, and thermal interfaces used by integrated microwave assemblies (IMAs) employed in defense systems. Rather, every system has been built to meet the requirements of a specific system, which may be but probably isn’t compatible with any other system. It’s simply the way the industry has always responded to requests from subcontractors that in turn must meet the physical, electrical, and RF requirements of prime contractors. Read More...

Home | About Us | Archives | Editorial Submissions | Media Kit (PDF) | Events | Subscribe/Renew | Contact Us
Copyright © 2014 Octagon Communication Inc. DBA MPDigest /, All Rights Reserved.
Privacy Policy | Site Map